当前位置:板报学习网-家庭知识-当前文章

2020年管理会计这几个划时代,改变行业的变化千万要知道!

2020-02-24 19:35:55    文来自/湖北省汉川市 3194

导读:本文是来自湖北省汉川市的网友投稿,由 兰州二中贴吧 编辑发布关于2020年管理会计这几个划时代,改变行业的变化千万要知道!的内容介绍

2020年是又一个新十年的开端,更是中国企业数字化转型蓬勃发展的开端。随着中台在过去一年以雷霆之势完成了从概念传播到落地实践的过程,企业数字化转型进入全面推开的新阶段,管理会计迎来了发展的重要契机和重大转折。站在2020年的门槛上展望前路,管理会计的应用正在呈现哪些变化和趋势?又有哪些创新是格外值得关注和期待的呢?

小编带你了解详情!

运营化

传统管理会计理论认为,战略是管理会计的最高导向。战略管理会计要求企业以战略为导向设计管理会计内容体系,展现了传统管理会计体系以确保战略有效落地为最高目标的主导思想。然而,随着全球经济的发展和企业管理的进步,经济波动的周期越来越短、越来越窄,企业所面对的经营环境的变化越来越快,战略的能见度变得越来越低,这使得以企业整体战略为导向的中长期数据的准确性和有效性大大减弱。企业要想在激烈而又瞬息万变的市场环境下立于不败之地,首先就需要具备对市场前端变化更快的响应速度。这就从需求上推动了管理会计应用由战略化转向运营化。

同时,在数字化时代,企业数据的数量、质量、计算能力和分析能力均大幅提升,这就为管理会计和数据应用带来了更多可能。以往,管理会计更多地用来支撑面向管理层的管理报告,对一线业务部门的赋能、对运营的支持相对较为薄弱。因为原来的数据采集、数据整理、数据加工太慢了,业务化信息也不充分,对业务运营的支持远远不够。而在新技术强大的计算速度和数据治理能力的加持下,管理会计与业务经营的融合更紧密。例如在做销售、生产、供应链和研发创新时,未来的管理会计能够给予新产品研发、投资、决策、立项更多的数据支撑,这就是管理会计在应用中从支持大决策向支持业务决策的巨大转变。

自动化

随着数据量的增加,为了提高人员的工作效率,自动化技术将会在管理会计领域发挥更大的作用。

以数据分析为例。以往企业上线分析系统往往是由IT人员来推动和建设的。随着财务转型的加速,越来越多的企业开始设置专门的数据分析岗位。固定格式的分析图表和仪表盘,无法满足这些专业的数据分析人员对数据加工处理的需求,向IT人员提出分析需求等待开发报表也无法满足业务要求,自助式分析逐渐成为企业数据分析应用的普遍需求。管理会计信息系统需要借助后台的多维数据模型,向数据分析人员提供更灵活的自助数据分析功能,让分析人员能够通过拖拽、点击等快速的操作,在数据模型中对数据进行快速、多维度分析,并输出或者保存分析报表。在自助分析方面,也可以利用语音或者文字交互,采用类搜索引擎的方式向系统提问,系统理解问题并在后台数据库中探索数据,并以适当的形式呈现给用户。

传统的分析工作需要靠人按照一定的路径对管理数据进行浏览和探索(下钻、旋转),与预算、经营目标对比来寻找数据异常以发现经营和管理中的问题,并形成分析结论。这些重复性的工作(例行的日、周、月度分析报告)可以由系统利用自动化技术实现,释放分析人员查询数据的时间,让他们能更专注地把精力花在分析数据背后的原因上面。

智能化

2017年,在提出智能财务整体框架的时候,我们曾提出了人工智能技术在财务领域应用的六大方向,包括财务预测、经营推演、风险量化、价值优化、决策自动化和信息推荐。现在,尽管我们已经可以实现对主体的财务预测、经营推演和风险量化等,但总体还处于弱智能阶段。人工的成分居多,真正机器智能部分还较少。

人工智能的技术发展有三个阶段:运算智能、感知智能和认知智能。运算智能让系统能存会算,感知智能让系统“能听会说,能看会认”,而认知智能让系统“能理解,会思考”,也就是可以联想推理。在管理会计领域,我们未来真正的挑战在于如何突破认知智能阶段。在这个阶段,系统要基于对管理科学的理解,进行规划、控制、预测和分析,给企业管理层更加精准、及时的决策分析依据,助力智能决策。

突破认知智能阶段所依靠的是以机器学习为核心的智能技术。机器学习可以用来解决多变量、很难用一个规则来计算的计算模型,通过机器可以采集大量的预测参数,对数据的输出进行快速计算。基于机器学习技术,系统可以基于对业务知识的理解,科学预测、合理控制、智能分析,真正成为管理和财务人员的智能助手。结合自然语言处理、知识图谱、图像识别等前沿的人工智能技术,机器学习还可以帮助企业实现商业智能的升级,实现自助式数据分析平台(自助BI),辅以移动化、协同化,打造融合战略规划、经营计划、开放式预算、滚动预算、经营预警到绩效管理等应用的,更易交互、更智能化的新一代智能管理平台。

近年来,在信息技术领域显露锋芒的顶尖新兴技术“数据科学平台”在管理会计领域亦拥有广阔的应用空间。在数据科学平台中,数据科学家可以利用隐形关联的历史数据,如企业内部运营数据(订单数量,投诉数量等)和外部数据(天气、社交网络情绪指数等)来训练机器学习模型。利用训练完成的模型对在线数据进行预测,从而让历史数据的静态分析变成一个动态的预测模型。利用这套工具提高数据科学研究的透明度、可重复性和可扩展性,让数据科学家能够更轻松地将动态的结果(比如广告活动的预测结果)推送给基于这些结果做决策的人,替代静态的历史数据报告。在管理会计领域,数据科学平台会给数据的使用者带来更好的用户体验,让管理者的业务决策信息更充分、更好地支持计划预算和经营预测。

责任编辑:

本文地址:https://m.banbaoedu.com/jiajiao/7496.html

声明:本站原创/投稿文章由板报教育网兰州二中贴吧编辑发布,所有权归板报教育网所有,转载务必注明来源;文章仅代表原作者观点,不代表板报教育网立场;如有侵权、违规,可直接反馈本站,我们将会作删除处理
评论

相关推荐

最新资讯